
Specification
(Working Draft)

Abstract

The tiny vector graphics format is a binary file format that
encodes a list of vector graphic primitives. It is tailored to have a
tiny memory footprint and simple implementations, while lifting
small file size over encoding simplicity.

Introduction
Why a new format
SVG is the status quo widespread vector format. Every program can kinda use it and can probably
render it right to some extent. The problem is that SVG is a horribly large specification, it is based on
XML and provides not only vector graphics, but also a full suite for animation and JavaScript scripting.
Implementing a new SVG renderer from scratch is a tremendous amount of work, and it is hard to get
it done right.

Quoting the german Wikipedia:

Praktisch alle relevanten Webbrowser können einen Großteil des Sprachumfangs darstellen.
Virtually all relevant web browsers can display a large part of the language range.

The use of XML bloats the files by a huge magnitude and doesn’t provide a efficient encoding, thus a
lot of websites and applications ship files that are not encoded optimally. Also, SVG allows several ways
of achieving the same thing, and can be seen more as an intermediate format for editing as for final
encoding.

TinyVG was created to address most of these problems, trying to achieve a balance between flexibility
and file size, while keeping file size as the more important priority.

Features
• Binary encoding
• Support of the most common 2D vector primitives

– Paths
– Polygons
– Rectangles
– Lines

• 3 different fill styles
– Flat color
– Linear 2-point gradient
– Radial 2-point gradient

• Dense encoding, there are near zero padding bits and every byte is used as good as possible.

Recognizing TinyVG
TinyVG is using the .tvg file extension and should use the image/tinyvg mime type.

The textual representation should use the .tvgt file extension and the text/tinyvg mime type.

Display Units
Contrary to pixel graphics, vector graphics don’t have a inherent unit system. While pixels in a bitmap
map 1:1 to pixels on a screen, a vector graphic unit does not have this requirement.

TinyVG uses an abstract unit called display unit which is defined to be a 1/96th of an inch. This matches
the CSS pixel definition so a TinyVG graphic with 48x48 display units will match a typical 48x48 bitmap.

Coordinate system
TinyVG uses the 2-dimensional Cartesian coordinate system with X being the positive horizontal distance
to the origin and Y being the negative vertical distance to the origin. This means that X is going right,
while Y is going down, to match the coordinate system of several other image formats:

1

https://de.wikipedia.org/wiki/Scalable_Vector_Graphics
https://en.wikipedia.org/wiki/Cartesian_coordinate_system

Binary Encoding
TinyVG files are roughly structured like this:

Command

Command

End Of File

Command

Command

Color Table

Header

Files are made up of a header, followed by a color lookup table and a sequence of commands terminated
by a end of file command.

Concrete color values will only be present in the color table. After the table, only indices into the color
table are used to define color values. This allows to keep the format small, as the first 128 colors in the
vector data are encoded as only a single byte, even if the color format uses 16 bytes per color. This
means in the worst case, we add a single byte to the size of a color that is only used once, but colors
that are common in the file will be encoded as a single byte per use + one time overhead. This encoding
scheme was chosen as a vector graphic typically doesn’t use as many different colors as bitmap graphics
and thus can be encoded more optimally.

Notes
• The following documentation uses a tabular style to document structures.

• All integers are assumed to be encoded in little-endian byte order if not specified otherwise.

• The Type column of each structure definition uses a Zig notation for types and the fields have no
padding bits in between. If a field does not align to a byte boundary, the next field will be offset
into the byte by the current fields bit offset + bit size. This means, that two consecutive fields a
(u3) and b (u5) can be extracted from the byte by using (byte & 0x7) >> 0 for a and (byte &
0xF8) >> 3 for b.

• If not specified otherwise, all coordinates in TinyVG are absolute coordinates, including path nodes
and gradients.

2

• A lot of encoded integers are encoded off-by-one, thus mapping 0 to 1, 1 to 2 and so on. This is
done as encoding these integers as 0 would be equivalent to removing the element from the file.
Thus, this can be used to encode some more elements with less bytes. If this is the case, this is
signaled by the use of value+1.

Header
Each TVG file starts with a header defining some global values for the file like scale and image size. The
header is always at offset 0 in a file.

Field Type Description
magic [2]u8 Must be { 0x72, 0x56 }
version u8 Must be 1. For future versions, this field might decide how the rest

of the format looks like.
scale u4 Defines the number of fraction bits in a Unit value.
color_encoding u2 Defines the type of color information that is used in the color table.
coordinate_range u2 Defines the number of total bits in a Unit value and thus the overall

precision of the file.
width u8, u16 or u32 Encodes the maximum width of the output file in display units.

A value of 0 indicates that the image has the maximum possible
width. The size of this field depends on the coordinate range field.

height u8, u16 or u32 Encodes the maximum height of the output file in display units.
A value of 0 indicates that the image has the maximum possible
height. The size of this field depends on the coordinate range field.

color_count VarUInt The number of colors in the color table.

Color Encoding

The color encoding defines which format the colors in the color table will have:

Value Enumeration Description
0 RGBA 8888 Each color is a 4-tuple (red, green, blue, alpha) of bytes with the color

channels encoded in sRGB and the alpha as linear alpha.
1 RGB 565 Each color is encoded as a 3-tuple (red, green, blue) with 16 bit per color.

While red and blue both use 5 bit, the green channel uses 6 bit. red uses
bit range 0...4, green bits 5...10 and blue bits 11...15. This color also uses
the sRGB color space.

2 RGBA F32 Each color is a 4-tuple (red, green ,blue, alpha) of binary32 IEEE 754
floating point value with the color channels encoded in scRGB and the
alpha as linear alpha. A color value of 1.0 is full intensity, while a value of
0.0 is zero intensity.

3 Custom The custom color encoding is defined undefined. The information how these
colors are encoded must be implemented via external means.

Coordinate Range

The coordinate range defines how many bits a Unit value uses:

Value Enumeration Description
0 Default Each Unit takes up 16 bit.
1 Reduced Each Unit takes up 8 bit.
2 Enhanced Each Unit takes up 32 bit.

3

VarUInt

This type is used to encode 32 bit unsigned integers while keeping the number of bytes low. It is encoded
as a variable-sized integer that uses 7 bit per byte for integer bits and the 7th bit to encode that there
is ”more bits available”.

The integer is still built as a little-endian, so the first byte will always encode bits 0…6, the second one
encodes 8…13, and so on. Bytes are read until the uppermost bit in the byte is not set. The bit mappings
are done as following:

Byte Bit Range Notes
#1 0…6 This byte must always be present.
#2 7…13
#3 14…20
#4 21…27
#5 28…31 This byte must always have the uppermost 4 bits set as 0b0000????.

So a VarUInt always has between 1 and 5 bytes while mapping the full range of a 32 bit value. This
means we only have 5 bit overhead in the worst case, but for all smaller values, we reduce the number
of bytes for encoding unsigned integers.

Encoding Examples The following table contains some examples on how a VarUInt is encoded as a
byte sequence. The byte sequence is written in hexadecimal to allow uniform notation.

Integer Value Byte Sequence
0 00
100 64
127 7F
128 80 01
16271 8F 7F
16383 FF 7F
16384 80 80 01
1048576 80 80 40
2097151 FF FF 7F
2097152 80 80 80 01
2147483648 80 80 80 80 08
4294967295 FF FF FF FF 0F

Example Code

fn read() u32 {
var count = 0;
var result = 0;
while (true) {

const byte = readByte();
const val = (byte & 0x7F) << (7 * count);
result |= val;
if ((byte & 0x80) == 0)

break;
count += 1;

}
return result;

}

fn write(value: u32) void {
var iter = value;

4

while (iter >= 0x80) {
writeByte(0x80 | (iter & 0x7F));
iter >>= 7;

}
writeByte(iter);

}

Color Table
The color table encodes the palette for this file. It’s binary content is defined by the color_encoding field
in the header. For the three defined color encodings, each will yield a list of color_count RGBA tuples.

RGBA 8888

Each color value is encoded as a sequence of four bytes:

Field Type Description
red u8 Red color channel between 0 and 100% intensity, mapped to byte values 0 to 255.
green u8 Green color channel between 0 and 100% intensity, mapped to byte values 0 to 255.
blue u8 Blue color channel between 0 and 100% intensity, mapped to byte values 0 to 255.
alpha u8 Transparency channel between 0 and 100% transparency, mapped to byte values 0

to 255.

The size of the color table is 4 * color_count.

This color encoding uses the sRGB color space.

RGB 565

Each color value is encoded as a sequence of 2 bytes:

Field Type Description
red u5 Red color channel between 0 and 100% intensity, mapped to integer values 0 to 31.
green u6 Green color channel between 0 and 100% intensity, mapped to integer values 0 to

63.
blue u5 Blue color channel between 0 and 100% intensity, mapped to integer values 0 to 31.

The size of the color table is 2 * color_count, and all colors are fully opaque.

This color encoding uses the sRGB color space.

RGBA F32

Each color value is encoded as a sequence of 16 bytes:

Field Type Description
red f32 Red color channel, using 0.0 for 0% intensity and 1.0 for 100% intensity.
green f32 Green color channel, using 0.0 for 0% intensity and 1.0 for 100% intensity.
blue f32 Blue color channel, using 0.0 for 0% intensity and 1.0 for 100% intensity.
alpha f32 Transparency channel between 0 and 100% transparency, mapped to byte values

0.0 to 1.0.

The size of the color table is 16 * color_count.

This color encoding uses the scRGB color space, so the intensity is allowed to be both negative and
positive for a wider color gamut.

5

Custom

The TinyVG specification does not describe the size nor format of this kind of color table. An implemen-
tation specific format is expected. A conforming parser is allowed to reject files with this color format
as ”unsupported”.

Commands
TinyVG files contain a sequence of draw commands that must be executed in the defined order to get
the final result. Each draw command adds a new 2D primitive to the graphic.

The following commands are available:

Index Name Short description
0 end of document This command determines the end of file.
1 fill polygon This command fills an N-gon.
2 fill rectangles This command fills a set of rectangles.
3 fill path This command fills a free-form path.
4 draw lines This command draws a set of lines.
5 draw line loop This command draws the outline of a polygon.
6 draw line strip This command draws a list of end-to-end lines.
7 draw line path This command draws a free-form path.
8 outline fill polygon This command draws a filled polygon with an outline.
9 outline fill rectangles This command draws several filled rectangles with an outline.
10 outline fill path This command combines the fill and draw line path command into one.

Each command is encoded as a single byte which is split into fields:

Field Type Description
command_index u6 The command that is encoded next. See table above.
prim_style_kind u2 The type of style this command uses as a primary style.

End Of Document

If this command is read, the TinyVG file has ended. This command must have prim_style_kind to be
set to 0, so the last byte of every TinyVG file is 0x00.

Every byte after this command is considered not part of the TinyVG data and can be used for other
purposes like metadata or similar.

Fill Polygon

Fills a polygon with N points.

The command is structured like this:

Field Type Description
point_count VarUInt The number of points in the polygon. This value

is offset by 1.
fill_style Style(prim_style_kind) The style that is used to fill the polygon.
polygon [point_count+1]Point The points of the polygon.

The offset in point_count is there due to 0 points not making any sense at all, and the command could
just be skipped instead of encoding it with 0 points. The offset is 1 to allow code sharing between other
fill commands, as each fill command shares the same header.

point_count must be at least 2, files that encode a lower value must be discarded as ”invalid” by a

6

https://en.wikipedia.org/wiki/Polygon

conforming implementation.

The polygon specified in polygon must be drawn using the even-odd rule, that means that if for any
point to be inside the polygon, a line to infinity must cross an odd number of polygon segments.

Point Points are a X and Y coordinate pair:

Field Type Description
x Unit Horizontal distance of the point to the origin.
y Unit Vertical distance of the point to the origin.

Units The unit is the common type for both positions and sizes in the vector graphic. It is encoded
as a signed integer with a configurable amount of bits (see Coordinate Range) and fractional bits.

The file header defines a scale by which each signed integer is divided into the final value. For example,
with a reduced value of 0x13 and a scale of 4, we get the final value of 1.1875, as the number is interpretet
as binary b0001.0011.

Fill Rectangles

Fills a list of rectangles.

The command is structured like this:

Field Type Description
rectangle_count VarUInt The number of rectangles. This value is offset by

1.
fill_style Style(prim_style_kind) The style that is used to fill all rectangles.
rectangles [rectangle_count+1]Rectangle The list of rectangles to be filled.

The offset in rectangle_count is there due to 0 rectangles not making any sense at all, and the command
could just be skipped instead of encoding it with 0 rectangles. The offset is 1 to allow code sharing
between other fill commands, as each fill command shares the same header.

The rectangles must be drawn first to last, which is the order they appear in the file.

Rectangle

Field Type Description
x Unit Horizontal distance of the left side to the origin.
y Unit Vertical distance of the upper side to the origin.
width Unit Horizontal extent of the rectangle.
height Unit Vertical extent of the rectangle origin.

7

https://en.wikipedia.org/wiki/Even%E2%80%93odd_rule

Fill Path

Fills a path. Paths are described further below in more detail to keep this section short.

The command is structured like this:

Field Type Description
segment_count VarUInt The number of segments in the path. This value

is offset by 1.
fill_style Style(prim_style_kind) The style that is used to fill the path.
path Path(segment_count+1) A path with segment_count segments

The offset in segment_count is there due to 0 segments don’t make sense at all and the command could
just be skipped instead of encoding it with 0 segments. The offset is 1 to allow code sharing between
other fill commands, as each fill command shares the same header.

For the filling, all path segments are considered a polygon each (drawn with even-odd rule) that, when
overlap, also perform the even odd rule. This allows the user to carve out parts of the path and create
arbitrarily shaped surfaces.

Draw Lines

Draws a set of lines.

The command is structured like this:

Field Type Description
line_count VarUInt The number of rectangles. This value is offset by

1.
line_style Style(prim_style_kind) The style that is used to draw the all rectangles.
line_width Unit The width of the line.
lines [line_count + 1]Line The list of lines.

Draws line_count + 1 lines with line_style. Each line is line_width units wide, and at least a single
display pixel. This means that line_width of 0 is still visible, even though only marginally. This allows
very thin outlines.

Line

Field Type Description
start Point Start point of the line
end Point End point of the line.

Draw Line Loop

Draws a polygon.

The command is structured like this:

Field Type Description
point_count VarUInt The number of points. This value is offset by 1.
line_style Style(prim_style_kind) The style that is used to draw the all rectangles.

8

Field Type Description
line_width Unit The width of the line.
points [point_count + 1]Point The points of the polygon.

Draws point_count + 1 lines with line_style. Each line is line_width units wide.

The lines are drawn between consecutive points as well as the first and the last point.

Draw Line Strip

Draws a list of consecutive lines.

The command is structured like this:

Field Type Description
point_count VarUInt The number of points. This value is offset by 1.
line_style Style(prim_style_kind) The style that is used to draw the all rectangles.
line_width Unit The width of the line.
points [point_count + 1]Point The points of the line strip.

Draws point_count + 1 lines with line_style.

The lines are drawn between consecutive points, but contrary to Draw Line Loop, the first and the last
point are not connected.

Draw Line Path

Draws a path. Paths are described further below in more detail to keep this section short.

The command is structured like this:

Field Type Description
segment_count VarUInt The number of segments in the path. This value

is offset by 1.
line_style Style(prim_style_kind) The style that is used to draw the all rectangles.
line_width Unit The width of the line.
path Path(segment_count + 1) A path with segment_count segments.

The outline of the path is line_width units wide.

Outline Fill Polygon

Fills a polygon and draws an outline at the same time.

The command is structured like this:

9

Field Type Description
segment_count u6 The number of points in the polygon. This value

is offset by 1.
sec_style_kind u2 The secondary style used in this command.
fill_style Style(prim_style_kind) The style that is used to fill the polygon.
line_style Style(sec_style_kind) The style that is used to draw the outline of the

polygon.
line_width Unit The width of the line.
points [segment_count+1]Point The set of points of this polygon.

This command is a combination of Fill Polygon and Draw Line Loop. It first performs a Fill Polygon
with the fill_style, then performs Draw Line Loop with line_style and line_width.

The outline commands use a reduced number of elements, the maximum number of points is 64.

Outline Fill Rectangles

Fills and outlines a list of rectangles.

The command is structured like this:

Field Type Description
rect_count u6 The number of rectangles. This value is offset

by 1.
sec_style_kind u2 The secondary style used in this command.
fill_style Style(prim_style_kind) The style that is used to fill the polygon.
line_style Style(sec_style_kind) The style that is used to draw the outline of

the polygon.
line_width Unit The width of the line.
rectangles [rect_count+1]Rectangle The list of rectangles to be drawn.

For each rectangle, it is first filled, then its outline is drawn, then the next rectangle is drawn. This
allows to overlap rectangles to look like this:

The outline commands use a reduced number of elements, the maximum number of points is 64.

Outline Fill Path

Fills a path and draws an outline at the same time.

The command is structured like this:

10

Field Type Description
segment_count u6 The number of points in the polygon. This value is offset

by 1.
sec_style_kind u2 The secondary style used in this command.
fill_style Style(prim_style_kind) The style that is used to fill the polygon.
line_style Style(sec_style_kind) The style that is used to draw the outline of the polygon.
line_width Unit The width of the line.
path Path(segment_count+1) The path that should be drawn.

This command is a combination of Fill Path and Draw Line Path. It first performs a Fill Path with the
fill_style, then performs Draw Line Path with line_style and line_width.

The outline commands use a reduced number of elements, the maximum number of points is 64.

Style(style_type)
There are three types of style available:

Value Style Type Description
0 Flat Colored The shape is uniformly colored with a single color.
1 Linear Gradient The shape is colored with a linear gradient.
2 Radial Gradient The shape is colored with a radial gradient.

Left to right the three gradient types:

Flat Colored

Field Type Description
color_index VarUInt The index into the color table

The shape is uniformly colored with the color at color_index in the color table.

Linear Gradient

Field Type Description
point_0 Point The start point of the gradient.
point_1 Point The end point of the gradient.
color_index_0 VarUInt The color at point_0.
color_index_1 VarUInt The color at point_1.

The gradient is formed by a mental line between point_0 and point_1. The color at point_0 is the
color at color_index_0 in the color table, the color at point_1 is the color at color_index_1 in the color
table.

On the line, the color is interpolated between the two points. Each point that is not on the line is
orthogonally projected to the line and the color at that point is sampled. Points that are not projectable
onto the line have either the color at point_0 if they are closed to point_0 or vice versa for point_1.

11

See the Color Interpolation chapter on how to perform the color interpolation in detail.

Radial Gradient

Field Type Description
point_0 Point The start point of the gradient.
point_1 Point The end point of the gradient.
color_index_0 VarUInt The color at point_0.
color_index_1 VarUInt The color at point_1.

The gradient is formed by a mental circle with the center at point_0 and point_1 being somewhere on
the circle outline. Thus, the radius of said circle is the distance between point_0 and point_1.

The color at point_0 is the color at color_index_0 in the color table, the color on the circle outline is
the color at color_index_1 in the color table.

If a sampled point is inside the circle, the color is interpolated based on the distance to the center and
the radius. If the point is not in the circle itself, the color at color_index_1 is always taken.

See the Color Interpolation chapter on how to perform the color interpolation in detail.

Path(segment_count)
Paths describe instructions to create complex 2D graphics.

The mental model to form the path is this:
Each path segment generates a shape by moving a ”pen” around. The path this ”pen” takes is the outline
of our segment. Each segment, the ”pen” starts at a defined position and is moved by instructions. Each
instruction will leave the ”pen” at a new position. The line drawn by our ”pen” is the outline of the
shape.

The following instructions to move the ”pen” are available:

Index Instruction Short Description
0 line A straight line is drawn from the current point to a new point.
1 horizontal line A straight horizontal line is drawn from the current point to a new x coor-

dinate.
2 vertical line A straight vertical line is drawn from the current point to a new y coor-

diante.
3 cubic bezier A cubic Bézier curve is drawn from the current point to a new point.
4 arc circle A circle segment is drawn from current point to a new point.
5 arc ellipse An ellipse segment is drawn from current point to a new point.
6 close path The path is closed, and a straight line is drawn to the starting point.
7 quadratic bezier A quadratic Bézier curve is drawn from the current point to a new point.

As path encoding is hard to describe in a tabular manner, a verbal one is chosen:

1. For each segment in the path, the number of commands is encoded as a VarUInt-1. Decoding a 0
means that 1 element is stored in the segment.

2. For each segment in the path:
1. A Point is encoded as the starting point.
2. The instructions for this path, the number is determined in the first step.
3. Each instruction is prefixed by a single tag byte that encodes the kind of instruction as well

as the information if a line width is present.
4. If a line width is present, that line width is read as a Unit
5. The data for this command is decoded.

The tag looks like this:

12

Field Type Description
instruction u3 The instruction kind as listed in the table above.
padding u1 Always 0
has_line_width u1 If 1, a line width is present.
padding u3 Always 0

Path encoding example As this is a very untypical kind of encoding, the following example will
showcase how a path is encoded. The path will have 3 segments of different length. For conciseness, the
encoding of each individual path component is left out. The unit format is default (16 bit coordinates)
with 2 bit precision.

Component Byte Sequence Meaning
Segment 0 length 02 Number of elements in segment 0 is 3
Segment 1 length 03 Number of elements in segment 1 is 4
Segment 2 length 80 10 Number of elements in segment 2 is 129
Segment 0 start 00 00 00 00 Segment 0 starts at (0, 0)
Segment 0 command 0 03 … Draw cubic bezier to …
Segment 0 command 1 02 … Draw vertical line to …
Segment 0 command 2 00 Close path
Segment 1 start 90 10 38 FF Segment 1 starts at (100, -50)
Segment 1 command 0 84 0A 00 … Draw arc circle to … and change line width to 2.5
Segment 1 command 1 00 Close path
Segment 1 command 2 04 00 … Draw arc circle to …
Segment 1 command 3 00 Close path
Segment 2 start 38 FF 90 10 Segment 2 starts at (-50, 100)
Segment 2 command 0 …
…

Line

The line instruction draws a straight line to the position.

Field Type Description
position Point The end point of the line.

Horizontal Line

The horizontal line instruction draws a straight horizontal line to a given x coordinate.

Field Type Description
x Unit The new x coordinate.

Vertical Line

The vertical line instruction draws a straight vertical line to a given y coordinate.

Field Type Description
y Unit The new y coordinate.

Cubic Bézier

The cubic bezier instruction draws a Bézier curve with two control points.

13

Field Type Description
control_0 Point The first control point.
control_1 Point The second control point.
point_1 Point The end point of the Bézier curve.

The curve is drawn between the current location and point_1 with control_0 being the first control
point and control_1 being the second one.

Arc Circle

Draws a circle segment between the current and the target point.

Field Type Description
large_arc u1 If 1, the large portion of the circle segment is drawn
sweep u1 Determines if the circle segment is left- or right bending.
padding u6 Always 0.
radius Unit The radius of the circle.
target Point The end point of the circle segment.

radius determines the radius of the circle. If the distance between the current point and target is larger
than radius, the distance is used as the radius.

When large_arc is 1, the larger circle segment is drawn.

If sweep is 1, the circle segment will make a left turn, otherwise it will make a right turn. This means
that if we go from the current point to target, a rotation to the movement direction is necessary to either
the left or the right.

Arc Ellipse

Draws an ellipse segment between the current and the target point.

Field Type Description
large_arc u1 If 1, the large portion of the ellipse segment is drawn
sweep u1 Determines if the ellipse segment is left- or right bending.
padding u6 Always 0.
radius_x Unit The radius of the ellipse in horizontal direction.
radius_y Unit The radius of the ellipse in vertical direction.
rotation Unit The rotation of the ellipse in mathematical negative direction, in degrees.
target Point The end point of ellipse circle segment.

radius_x and radius_y determine the both radii of the ellipse. If the distance between the current point
and target is not enough to fit any ellipse segment between the two points, radius_x and radius_y are
scaled uniformly so that it fits exactly.

When large_arc is 1, the larger circle segment is drawn.

If sweep is 1, the ellipse segment will make a left turn, otherwise it will make a right turn. This means
that if we go from the current point to target, a rotation to the movement direction is necessary to either
the left or the right.

Close Path

A straight line is drawn to the start location of the current segment. This instruction doesn’t have
additional data encoded.

14

Quadratic Bézier

The quadratic bezier instruction draws a Bézier curve with a single control point.

Field Type Description
control Point The control point.
point_1 Point The end point of the Bézier curve.

The curve is drawn between the current location and point_1 with control being the control point.

Rendering
This chapter specifies details of the TinyVG rendering so all images will look the same on different
platforms.

The following formulas and code examples use color intensity values between 0.0 and 1.0.

Linear Color Space Conversion
Certain rendering options must happen in linear color space. For each color space, a conversion routine
is defined in the specification of that color space.

For sRGB, the following routines can be used:
RGB toColorSpace (RGB val) {

return pow(val , 1 .0 / 2 . 2) ;
}

RGB toLinear (RGB val) {
return pow(val , 2 . 2) ;

}

Alpha Blending
Alpha blending describes the process of blending two transparent colors over each other. As TinyVG has
a transparent background by default, transparency must be respected when blending colors together.
// Blends the src co lor over the dst co lor
RGBA blend (RGBA dst , RGBA src) {

i f (s rc . a == 0) {
return dst ;

}
i f (s rc . a == 1.0) {

return src ;
}

const alpha = src . a + (1 .0 - src . a) * dst . a ;

return RGBA(
. r = lerpColor (src . r , dst . r , s rc . a , dst . a , fin_alpha) ,
. g = lerpColor (src . g , dst . g , s rc . a , dst . a , fin_alpha) ,
. b = lerpColor (src . b , dst . b , s rc . a , dst . a , fin_alpha) ,
. a = alpha ,

) ;
}

f l o a t lerpColor (f l o a t src , f l o a t dst , f l o a t src_alpha , f l o a t dst_alpha , f l o a t alpha) {
const src_val = toLinear (src) ;
const dst_val = toLinear (dst) ;

const value = (1 .0 / alpha) * (src_alpha * src + (1 .0 - src_alpha) * dst_alpha * dst) ;

return toColorSpace (value) ;
}

15

Color Interpolation
Color interpolation is needed in gradients and must performed in linear color space. This means that
the value from the color table needs to be converted to linear color space, then each color component is
interpolated linearly and the final color is then determined by converting the color back to the specified
color space.
RGBA blend (RGBA f i r s t , RGBA second , f l o a t f) {

f = clamp(f , 0 .0 , 1 . 0) ;
return RGBA {

. rgb = toColorSpace (
le rp (toLinear (f i r s t . rgb) , toLinear (second . rgb) , f)

) ,
. a = lerp (f i r s t . a , second . a , f) ,

) ;
}

le rp (a , b , f l o a t f) {
return a + (b- a) * f ;

}

Line Rendering
Lines are rendered with round line caps and use a total width. Lines in TinyVG can be seen as the
Minkowski sum of a sphere with the line width a diameter and the line itself.

Lines that have a width less than a pixel on the final display, they should be rendered as exactly on pixel
wide. Otherwise lines might get invisible, jagged or otherwise incomplete.

Revision History
1.0

• Initial release

16

	Introduction
	Why a new format
	Features

	Recognizing TinyVG
	Display Units
	Coordinate system
	Binary Encoding
	Notes
	Header
	Color Encoding
	Coordinate Range
	VarUInt

	Color Table
	RGBA 8888
	RGB 565
	RGBA F32
	Custom

	Commands
	End Of Document
	Fill Polygon
	Fill Rectangles
	Fill Path
	Draw Lines
	Draw Line Loop
	Draw Line Strip
	Draw Line Path
	Outline Fill Polygon
	Outline Fill Rectangles
	Outline Fill Path

	Style(style_type)
	Flat Colored
	Linear Gradient
	Radial Gradient

	Path(segment_count)
	Line
	Horizontal Line
	Vertical Line
	Cubic Bézier
	Arc Circle
	Arc Ellipse
	Close Path
	Quadratic Bézier

	Rendering
	Linear Color Space Conversion
	Alpha Blending
	Color Interpolation
	Line Rendering

	Revision History
	1.0

